KAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions
نویسندگان
چکیده
with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u = 0. It is proved that for “most” potentials V (x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem which allows for multiple normal frequencies.
منابع مشابه
A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations
We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with peri...
متن کاملQuasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗
In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...
متن کاملA Variant of Kam Theorem with Applications to Nonlinear Wave Equations of Higher Dimension
The existence of lower dimensional KAM tori is shown for a class of nearly integrable Hamiltonian systems where the second Melnikov’s conditions are relaxed, at the cost of the stronger regularity of the perturbed nonlinear term. As a consequence, it is proved that there exist many linearly stable invariant tori and thus quasi-periodic solutions for nonlinear wave equations of non-local nonline...
متن کاملA KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions
In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ g(u, ū) ū = 0, with Periodic Boundary Conditions is considered; m / ∈ 1 12Z is a real parameter and the nonlinearity g(u, ū)= ∑ j,l,j+l 4 ajlu j ū , aj l = alj ∈ R, a22 = 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-a...
متن کاملKAM tori for higher dimensional beam equations with constant potentials∗
In this paper, we consider the higher dimensional nonlinear beam equations utt + u + σu + f (u) = 0, with periodic boundary conditions, where the nonlinearity f (u) is a real– analytic function nearu = 0 with f (0) = f ′(0) = 0 and σ is a real parameter in an interval I ≡ [σ1, σ2]. It is proved that for ‘most’ positive parameters σ lying in the finite interval I, the above equations admit a fam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008